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1    Overview 

This project focused on developing advanced security technology in the areas of operating systems, software 
components, distributed shared memory, and language types. The security emphasis of much of the work was 
on resource management. As originally conceived and proposed in April 1995, the software base for the OS 
work was to be Utah's version of the Mach kernel and operating system, the component work was to build 
on the Flick IDL compiler and Utah's OMOS object server, and the distributed shared memory work was to 
be an extension of Utah's nascent Quarks system, oriented to closely coupled cluster environments. 

However, the grant did not actually begin until over a year later, in August 1996. By then we had made 
progress that caused some of our research infrastructure and our research emphases to change. 

With DARPA's approval, in late 1995 we moved away from the Mach kernel as an OS development base 
to Fluke, a new operating system architecture and microkernel that we developed. For component work we 
moved from OMOS to the OSKit; the Hick IDL compiler remained an important research base, as originally 
proposed. We also moved our distributed shared memory focus from the local area to the more general and, 
we believe, more important problem of providing infrastructure to a wide variety of distributed applications 
and over a wider geographical area than a cluster. Out of this grew the Khazana/KOLA system. Finally, we 
applied language type-based protection to developing Java operating systems, applying our OS structuring 
techniques to Java virtual machines. 

These changes set the context for all of the work performed under this grant. We now summarize original 
and new approaches in each of the areas of work in the original proposal, plus three entirely new areas. 

• Mach kernel and OS: resource management and information control 
New Fluke kernel and OS: new infrastructure, same topic 

• Adaptation 
Replaced by adaptive handling of network bandwidth: OSKit hpfq component 

• Flick IDL Compiler 
Same 

• Secure local DSM 
Khazana/KOLA: Wide-area caching infrastructure 

• Language type-based security 
Language type-based (Java) OS implementations: Alta. GVM 

• Application to test cases 
Secure environments (wrappers), plus design of sophisticated applications (NRL pump) 

• Official collaboration 
NSA: very close; WUSTL, BBN, CMU: moderate 

m Entirely new areas, not originally proposed: 

- Flask high-security kernel and OS 

- User-level device drivers 

- Formal methods applied to Fluke IPC 



Scope: Approximately 2.5 years of this 3 year project overlapped with another DARPA-funded project 
of ours, "Fast and Flexible Mach-Based Systems," AO #B799, monitored by the Department of the Army. 
As discussed with our Rome Air Force Research Lab grant monitors and DARPA Program Manager during 
their visit to Utah on 18 March 1998, the extremely intertwined nature of these projects made it impossible to 
separate and allocate tasks entirely to one contract or the other. Therefore they approved having our quarterly 
reports partially overlap in content. We follow the same procedure in this report: results that were achieved 
before or after the overlapping 2.5 years are reported only in the appropriate report; during the overlap results 
are attributed to both grants. A few of the papers show a publication date beyond the end of the respective 
grant period; in these cases the reported work and all or nearly all of the writing was actually accomplished 
during the grant period. Normal latency in the publishing process accounts for the apparent discrepancy. 

Administrative notes: We had an unusually low rate of expenditures during the early years of this project. 
The most important reason for this was the project's technical overlap with the DARPA-funded project men- 
tioned above, combined with the scarcity of "systems" students and qualified staff due to high demand by 
industry, compounded, for staff, by University-mandated pay scales. (With the current Silicon Valley indus- 
trial boom, this problem will just get more severe.) However, much of the work was still carried out under the 
other DARPA-funded project. That project could not find enough staff either, so the pace of progress in both 
projects was slower than planned. Since no extension of this grant's duration was possible, the low expendi- 
ture rate in the grant's early years caused the total funding received under this grant to be only $1,742,987, 
not the originally planned amount of $2,542,987. This 31% reduction in funding did cause some reduction 
in our planned accomplishments, but nevertheless, we did deliver a great number of results, both in software 
and publications. 

Outline: The bulk of the rest of this report is structured around the many software systems developed under 
this project. They fall into six categories: 

1. The Fluke/Flask Kernel and Operating System 

2. The OSKit: Reusable Components for OS Implementation 

3. The Flick Interface Definition Language Compiler 

4. MOM: The Mini Object Model 

5. Java Operating Systems 

6. The Khazana/KOLA Infrastructure for Building Distributed Services 

This is followed by some comments on technology transfer in Section 3. The report concludes with a 
categorized list of publications. 



2   Results 

2.1   The Fluke/Flask Kerne! and Operating System 

Background: In mid-December 1995 we met with Gary Koob, our DARPA program manager for the re- 
lated contract (AO #B799), and discussed a change in strategy to achieve that project's original goals, as well 
as to attempt more ambitious ones. In the next quarter that proposed direction crystallized and work accel- 
erated in that direction. Teresa Lunt (at the time our DARPA program manager for this grant), Gary Koob, 
Bob Parker, and Jeff Turner (NCSC/NS A), all seemed pleased with our new strategy, and we were gratified 
both by the response and our own progress. 

In summary, before this grant began, we moved away from the Mach kernel to Fluke, a novel operat- 
ing system structure designed for high assurance and efficient support of recursive virtual machines.1 We 
conceived the new structure, developed the requirements for the new kernel, and designed the kernel archi- 
tecture. 

During the term of this grant, we worked closely with the National Security Agency and Secure Com- 
puting Corporation to design and implement additions to Fluke to form a high-security system called Flask. 
We implemented a prototype Fluke/Flask kernel on the Intel x86, implemented ten virtual machine monitors 
and servers, including a virtual memory manager, a checkpointer, a process manager, a file server, a network 
server, a secure network server, and a server providing transparent distributed IPC. Several libraries to sup- 
port these services were also designed and implemented. The overall Fluke operating system includes major 
additional components which we developed and separately packaged and distributed: the OSKit, the Flick 
IDL compiler, and the Mini Object Model and runtime. These are described in later sections. 

Our Fluke/Flask kernel implementation was designed to be relatively simple in order to facilitate exper- 
imentation, to be as portable as possible, to provide maximum error checking and reporting, to conform to 
strict code modularity and layering disciplines in anticipation of high-security implementations, and to reuse 
as much existing code as possible. For all of these reasons this implementation of the Fluke kernel architec- 
ture is not optimized, and conclusions regarding the performance limits of the Fluke architecture should not 
be drawn from it. Application of the well-documented design and implementation techniques demonstrated 
by kernels such as L4 would markedly improve Fluke's performance. 

Fluke Motivation: the Persistent Relevance of the Local Operating System: The growth and popular- 
ity of loosely-coupled distributed systems such as the World Wide Web and the touting of Java-based systems 
as the solution to the issues of software maintenance, flexibility, and security are changing the research em- 
phasis away from traditional single node operating system issues. Apparently, the view is that traditional OS 
issues are either solved problems or minor problems. By contrast, we believed that building such vast dis- 
tributed systems upon the fragile infrastructure provided by today's operating systems is analogous to build- 
ing castles on sand. In a paper [1] at a high-visibility international workshop we outlined the supporting ar- 
guments for these views and described the Fluke OS design that supports secure encapsulation of the foreign 
processes that will be increasingly prevalent in tomorrow's distributed systems. 

1 It is important to note that Fluke's "virtual machines" have nothing inherently to do with Java. They are not byte code inter- 
preters, but are more akin to the "virtual machine monitors*' of classical virtual machine architectures of the I970*s. 



2.1.1   Fluke/Flask OS Components 

The Fluke/Flask operating system is highly modular and highly structured, as is appropriate for a high-security 
or safety-critical system. Besides the kernel, the Fluke OS includes a large number of servers, libraries, and 
IDL-specified interfaces between processes. Most of the major servers providing POSIX-like function (e.g., 
network, filesystems) are themselves highly modular, containing unchanged OSKit components. 

• "Common protocols": IPC-based interfaces between the virtual machine layers (between the "nesters"), 
specified in CORBAIDL. For example, the common protocols include interfaces for memory alloca- 
tion, networking, file access, and device access. 

• Fluke libraries 

- libsac:  Provides a POSIX-like interface to client applications, including optimized access to 
Fluke IPC-based services. 

- libnest: Common infrastructure for Fluke servers (nesters), such as functions to create and ini- 
tialize new virtual environments (new levels of nesting). 

- libmm: Memory management. Used by both the kernel and the virtual memory manager. 
- libwrap: Used to interpose on the common protocols, to provide sandboxing or logging. 
- libmemdebug: Memory allocation debugging aid. 
- libyfs: Simple filesystem, useful for development. 

• Fluke servers 

- kernel server: The "root" nester; this is a normal Fluke nester, except that it has the same memory 
mappings as the kernel. The source of resources (e.g. memory, device access). 

- virtual memory manager: Obtains physical memory from an ancestor (normally the kernel server) 
and provides virtual memory to all descendent processes. Normally the first nester started outside 
the kernel, except in Flask, when the security policy server is first. 

- checkpointer: Provides checkpointing of descendent processes. 
- process manager: Provides process management for its immediate child processes; e.g., fork/kill/signal. 
- branch nester: Forks a branch of the virtual machine hierarchy into two branches, without chang- 

ing anything else (unlike the process manager, above). 
- logging nester: When interposed into a branch of the virtual machine hierarchy, logs all com- 

munication between levels. 
- network server: Provides TCP/IP and sockets. 
- network (distributed) IPC server: Extends Fluke IPC across a network. 
- real file server: Provides full BSD filesystem functionality. 
- memory file server: RAM disk filesystem. 
- trivial file server: A simple file server. 

• Flask-specific libraries and servers 

- security policy server: Based on a policy database, provides decisions on access, object labeling, 
and polyinstantiation. Normally the first Flask server to be started. 

- libavc: Access Vector Cache: minimizes and optimizes communication to the security policy 
server, while providing coherence. 



2.1.2 Recursive Virtual Machine Architecture 

Fluke brings together two lines of research and two heretofore disparate architectures: microkernels and re- 
cursive virtual machines [2]. 

Fluke represents a novel approach to providing modular and extensible operating system functionality 
and encapsulated environments based on a synthesis of microkernel and virtual machine concepts. We de- 
veloped a software-based virtiializable architecture called Fluke that allows recursive virtual machines (vir- 
tual machines running on other virtual machines) to be implemented efficiently by a microkernel running on 
generic hardware. A complete virtual machine interface is provided at each level; efficiency derives from 
needing to implement only new functionality at each level. This infrastructure allows common OS function- 
ality, such as process management, demand paging, fault tolerance, and debugging support, to be provided 
by cleanly modularized, independent, stackable virtual machine monitors, implemented as user processes. 
It can also provide uncommon or unique OS features, including the above features specialized for particular 
applications' needs, virtual machines transparently distributed cross-node, or security monitors that allow 
arbitrary untrusted binaries to be executed safely. Our prototype implementation of this model indicates that 
it is practical to modularize operating systems this way. Some types of virtual machine layers impose al- 
most no overhead at all, while other impose some overhead (typically 0-35%), but only on certain classes of 
applications. 

2.1.3 Flexible Checkpointing 

One of the novel features provided by this fully "nestable" OS architecture is the ability for an otherwise 
ordinary user process to checkpoint (or migrate) the state of unchanged, arbitrary child processes. Indeed, 
any set of programs may be checkpointed. Transparent checkpointing of unchanged programs is itself highly 
unusual. As far as we know only three systems have ever provided that feature, and they are either old or 
experimental. L3 , KeyKOS , and KeyKOS's contemporary re-implementation, EROS . However, in those 
OS's the entire computer system is persistent. Fluke is novel in the flexible scope one can choose for its 
persistence feature: anywhere on the spectrum from one (or zero) processes, to the whole machine. 

Such checkpointing requires complete access to the entire state of a process, and Fluke is novel in that 
it can provide such access, in a secure manner, to any ordinary user process [3]. Checkpointing, process 
migration, and similar services need to have access not only to the memory of the constituent processes, but 
also to the complete state of all kernel provided objects (e.g., threads and ports) involved. Traditionally, a 
major stumbling block in these operations is acquiring and re-creating the state in the operating system. 

We implemented a transparent user-mode checkpointer as an application on the Fluke microkernel. The 
microkernel consistently and cleanly supports the importing and exporting of fundamental kernel state safely 
to and from user applications. Implementing a transparent checkpointing facility with this sort of kernel sup- 
port simplifies the implementation, and expands its flexibility and power. 

2.1-4   Atomicity of Kernel API and Kernel Operations 

In order to provide completely exportable kernel state a novel kernel property is required. This property re- 
lates to the 'atomic" nature of the kernel's application programming interface—-its API [4]. In the Fluke 
kernel we defined and implemented a kernel API that makes every exported operation fully interruptible 
and restartable, thereby appearing atomic to the user. To achieve interruptibility, all possible kernel states 
in which a thread may become blocked for a "long" time are represented as kernel system calls, without re- 
quiring the kernel to retain any unexposable internal state. 



Since all kernel operations appear atomic, services such as transparent checkpointing and process mi- 
gration that need access to the complete and consistent state of a process can be implemented by ordinary 
user-mode processes. Atomic operations also enable applications to provide reliability in a more straightfor- 
ward manner. 

This API also allowed us to explore novel kernel implementation techniques and to evaluate existing tech- 
niques. The Fluke kernel's single source implements either the "process" or the "interrupt" execution model 
on both uniprocessors and multiprocessors, depending on a configuration option affecting a small amount of 
code. 

We reported measurements comparing fully, partially and non-preemptible configurations of both process 
and interrupt model implementations. We found that the interrupt model has a modest performance advan- 
tage in some benchmarks, maximum preemption latency varies nearly three orders of magnitude, average 
preemption latency varies by a factor of six, and memory use favors the interrupt model as expected, but not 
by a large amount. We found that the overhead for restarting the most costly kernel operation ranges from 
2-8% of the cost of the operation. 

This atomicity of the kernel interface provides an important building block for the high-security variant 
of Fluke, called "Flask." Revocation of permissions is a key challenge for secure systems, and as we'll see 
later, Fluke's "atomic" API makes revocation significantly more tractable. 

2.1.5 CPU Inheritance Scheduling 

Fluke's recursive architecture is a good match for hierarchical resource management schemes, which them- 
selves are a good match to the natural administrative hierarchy found in the real world. In designing re- 
source management frameworks for Fluke, we developed a novel hierarchical processor scheduling frame- 
work called CPU inheritance scheduling [5]. This is a framework for scheduling policies, not a policy itself, 
and is applicable far beyond the Fluke kernel. 

Traditional processor scheduling mechanisms in operating systems are fairly rigid, often supporting only 
one fixed scheduling policy, or, at most, a few "scheduling classes" whose implementations are closely tied 
together in the OS kernel. We invented CPU inheritance sclieduling, a novel processor scheduling frame- 
work in which arbitrary threads can act as schedulers for other threads. Widely different scheduling poli- 
cies can be implemented under the framework, and many different policies can coexist in a single system, 
providing much greater scheduling flexibility. Modular, hierarchical control can be provided over the pro- 
cessor utilization of arbitrary administrative domains, such as processes, jobs, users, and groups, and the 
CPU resources consumed can be accounted for and attributed accurately. Applications, as well as the OS, 
can implement customized local scheduling policies; the framework ensures that all the different policies 
work together logically and predictably. As a side effect, the framework also cleanly addresses priority in- 
version by providing a generalized form of priority inheritance that automatically works within and among 
diverse scheduling policies. CPU inheritance scheduling extends naturally to multiprocessors, and supports 
processor management techniques such as processor affinity and scheduler activations. In our prototype im- 
plemented we showed that this flexibility can be provided with acceptable overhead in typical environments, 
depending on factors such as context switch speed and frequency. 

2.1.6 The Fluke Device Driver Framework 

Providing efficient device driver support in the Fluke operating system presents novel challenges, which stem 
from two conflicting factors: (i) for maintainance and economic reasons, a requirement to reuse unmodified 



legacy device drivers, as encapsulated in the OSKit, discussed later in Section 2.2, and (ii) the mismatch 
between the Fluke kernel's internal execution environment and the execution environment expected by these 
legacy device drivers. In this work, which was documented in a thesis [6], we developed a solution to this 
conflict: a framework whose design is based on running device drivers as user-mode servers, which resolves 
the fundamental execution environment mismatch. 

This approach introduces new problems and issues, of which the most important are synchronization, 
interrupt delivery, physical memory allocation, access to shared resources, and performance. We success- 
fully addressed the functional issues, as demonstrated by the fact that the majority of device drivers execute 
successfully without change and are routinely used by Fluke developers. Based on our experience with the 
minority of drivers that did require changes, and our experience developing the framework, we proposed 
guidelines for improving device drivers' portability across different execution environments. 

Running device drivers in user mode raises serious performance issues but on the whole they were suc- 
cessfully mitigated. We compared the driver performance in Fluke with that in the original legacy systems, 
in terms of latency, bandwidth, and processor utilization. We found that reasonable performance (between 
88-93% of the best-performing Unix systems in a realistic workload) and acceptable processor overhead 
(between 0-100%) are achievable. The limiting factor is the IPC performance of the underlying Fluke OS 
layers. 

2.1.7   Extending Fluke IPC for Transparent Remote Communication 

Fluke not only provides a base for the POSIX-like environment that we implemented, it provides a base for 
experimental OS features. One such feature is the checkpointer described above. In a major effort we ex- 
plored the issues of providing transparently distributed interprocess communication [7] for Fluke. We had 
several motivations for this work. 

Distributed systems such as client-server applications and cluster-based parallel computation are an im- 
portant part of modem computing. Distributed computing allows the balancing of processing load, increases 
program modularity, isolates functionality, and can provide an element of fault tolerance. In these envi- 
ronments, systems must be able to synchronize and share data through some mechanism for remote inter- 
process communication (IPC). Although distributed systems have many advantages, they also pose several 
challenges. One important challenge is transparency. It is desirable that applications can be written to a com- 
munication interface that hides the details of distribution. 

One way to achieve transparency is through the extension of local communication mechanisms over a 
network for remote communication. The ability to transparently extend local communication depends on the 
semantics of the local IPC mechanisms. Unfortunately, those semantics are often driven by other architec- 
tural goals of the system and may not necessarily be best suited for remote communication. 

In this work we developed a remote IPC implementation for the Fluke operating system and documented 
our findings in a thesis [7]. We performed an extensive analysis of the Fluke architecture, IPC system, and 
IPC semantics, with regard to the extension of local IPC for transparent remote communication. We showed 
that the overall complexity of both the kernel IPC subsystem and the network IPC implementation is consid- 
erably less than similar operating systems' IPC mechanisms, and that the Fluke IPC architecture is generally 
well-suited for transparent remote IPC. However, our work also showed that the lack of kernel-provided ref- 
erence counting caused more problems than it solved, and that the generality of an important Fluke kernel 
object, the "reference," makes it impossible for the network IPC system to provide completely transparent 
remote IPC without extensive additional services. 



2.1.8 The Flask Security Architecture: System Support for Diverse Security Policies 

For a secure operating system to be practical and cost effective to build and maintain, it must be useful to 
a wide variety of market segments and application domains. Therefore a single OS must provide sufficient 
underlying mechanisms to support the wide variety of real-world security policies, which need to be separable 
from the OS. 

Such flexibility requires controlling the propagation of access rights, enforcing fine-grained access rights 
and supporting the revocation of previously granted access rights. Previous systems are lacking in at least 
one of these areas. In a technical report and later a published paper [8], jointly written with our NS A and SCC 
collaborators, we presented and evaluated the Flask operating system security architecture that solves these 
problems. Control over propagation is provided by ensuring that the security policy is consulted for every 
security decision. This control is achieved without significant performance degradation through the use of a 
security decision caching mechanism that ensures a consistent view of policy decisions. Both fine-grained 
access rights and revocation support are provided by mechanisms that are directly integrated into the service- 
providing components of the system. The architecture was described through its prototype implementation in 
the Flask microkernel-based operating system, and the policy flexibility of the prototype was evaluated. We 
presented initial evidence that the architecture's impact on both performance and code complexity is modest. 
Moreover, our architecture is applicable to many other types of operating systems and environments. 

2.1.9 Implementing Mandatory Network Security in a Policy-flexible System 

The use of networks is growing continuously, constantly increasing the vulnerability of the computer sys- 
tems that use them. Current solutions for network security, such as firewalls, cannot support sophisticated 
trust relationships with external entities and lack a comprehensive approach to security. Research in security 
has shown the usefulness of mandatory security mechanisms for supporting sophisticated trust relationships 
and secure endpoints in addition to secure communication channels. Other efforts at incorporating manda- 
tory security mechanisms into the network stack have a limited notion of access control policies. This work, 
documented in a thesis [9], dealt with the design and implementation of a more comprehensive and flexible 
network security architecture that enforces a mandatory access control policy on network-related operations 
and a mandatory cryptographic policy on network traffic. 

The implementation involved modifying the FreeBSD TCP/IP stack within the Flask secure operating 
system. Access control decisions are made in a policy-flexible manner by consulting a security server and 
security attributes are interpreted only by the security server. The access control design maps access control 
requirements to checks made at different layers in the network stack according to the functionality provided 
by the layer. This approach has several advantages, which include less time spent on illegal packets and the 
ability to specify policy in a fine-grain manner. Network cryptographic protection was provided using the 
IPsec protocol for cryptographic support and the ISAKMP protocol for key management. 

2.1.10 Utah Assurance Work: Applying Formal Methods to Fluke IPC 

The formal methods community has long known about the need to formally analyze concurrent software, but 
the OS community has been slow to adopt such methods. The foremost reasons for this are the cultural and 
knowledge gaps between formalists and OS hackers, fostered by three beliefs: inaccessibility of the tools, the 
disabling gap between the validated model and actual implementation, and the intractable size of operating 
systems. In a paper at a prestigious and high visibility OS workshop [10], we showed these beliefs to be 
untrue for appropriately structured operating systems. 
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We applied formal methods to verify properties of the implementation of the Fluke microkernel's IPC 
subsystem, a major component of the kernel—over 20%. In particular, we verified, in many scenarios, the 
lack of deadlock and certain liveness properties, with results that apply to both SMP and uniprocessor envi- 
ronments. The SPIN model checker developed by Holzmann provided an exhaustive concurrency analysis 
of the IPC subsystem, unattainable through traditional OS testing methods. In a novel result, we found that 
the stylized coding used in Fluke made it relatively straightforward to generate the model directly from the 
implementation, as opposed to from the design, as is commonly done— giving stronger assurance guaran- 
tees. SPIN proved to be easily accessible to programmers inexperienced with formal methods. We presented 
our results as a starting point for a more comprehensive inclusion of formal methods in practical OS devel- 
opment. In addition, our software artifact—Fluke IPC implemented in a model checking language—was 
publically distributed. 

2.1.11   External Assurance Work: Formal Analysis of Fluke/Flask 

The Secure Computing Corporation did extensive analysis of the Flask security architecture and its design 
and implementation in our Fluke microkernel-based system. At times both we and our NSA collaborators 
worked closely with SCC, sometimes leading to changes in the Fluke design and implementation, and always 
leading to a clearer understanding by all parties. SCC's efforts culminated in three SCC-authored reports, 
which provide a solid analysis of many aspects of Fluke/Flask, and a base for future efforts. (We list these 
reports in Section 4, but of course do not intend to imply that we produced them.) 

Assurance in the Fluke Microkernel: Formal Security Policy Model [11] presents the formal model of the 
security control requirements for the Fluke microkernel, including a formalization in the PVS specification 
language. More generally, it provides a security model for the Fluke andFlask systems, discussingthe overall 
security architecture, security requirements on the different elements of the architecture, and the range of 
policies supportable within the architecture. 

Assurance in the Fluke Microkernel: Formal Top-Level Specification [12] contains formal specifications 
of the access vector cache and prototype security server for the Flask system, including a formalization in the 
PVS specification language. It also presents a model for reasoning about the ability of a computing system to 
support dynamic security policies, and in particular changes to the security policy which restrict operations 
that were previously allowed. 

Assurance in the Fluke Microkernel: Final Report [13] contains the final report for SCC's "Fluke Assur- 
ance" program. It includes a summary of the objectives, accomplishments, and outputs from the program, 
and overviews of the major technical areas: the security architecture, the Fluke implementation of the se- 
curity architecture, the dynamic security policy study, innovations in the security policy server, results of 
the composition study, and suggestions for future work. Updates to the previously published formal security 
policy model and top level specification are also included. 

2.1.12   Kernel Performance 

Major performance work in Fluke was pursued during the entire project. Some of the 
work had interesting and sometimes novel research aspects. For example, a number of Fluke kernel object 
optimizations have been implemented which improve "critical path" operations. In a novel design, these op- 
timizations allow certain kernel operations to be performed in user mode, i.e., without trapping to the kernel, 
and without loss of integrity or atomicity. Optimized operations include locking and unlocking of uncon- 
tested mutexes as well as certain state gathering operations on Fluke references (capabilities). In early 1998 
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we increased our efforts to improve performance in the base system. In addition to "gprof" (profiling) sup- 
port for the kernel, we added gprof support for user mode applications. Together, this support provided a 
vital tool for understanding and analyzing the behavior of Fluke and its applications. Profiling identified a 
number of problem areas which have been corrected including inefficient memory and object allocation in 
Flick stubs and the need for a specialized memory allocator for Fluke kernel objects. 

As another example, we later designed and prototyped two IPC extensions (atomic calls to perform "receive- 
message-and-acquire-mutex" and "receive-message-with-sender-identification") that enable a more efficient 
implementation of the higher-level MOM (see Section 2.4) client/server infrastructure. Though simple in 
concept, the extensions required careful analysis to ensure that they meet the atomicity requirements of the 
Fluke system as well as the security requirements of the Flask architecture. Preliminary results showed im- 
provements of up to 30% on MOM operations that pass object references. 

22   The OSKit: Reusable Components for OS Implementation 

We gradually isolated, formalized, and generalized the infrastructure that we had originally developed only to 
support Fluke. The OSKit—reusable components for low-level systems—went from a rough prototype to a 
robust set of over 30 components with carefully designed interfaces. The OSKit has proven to be highly use- 
ful to a wide variety of external research, development, and even commercial projects. It currently supports 
two architectures, the Intel x86, important because of its wide use, and the StrongARM, important because 
of its growing popularity in embedded systems, due to its combination of low power and high performance. 

Implementing new operating systems is tedious, costly, and often impractical except for large projects. 
The Flux OSKit addresses this problem in a novel way by providing clean, well-documented OS compo- 
nents designed to be reused in a wide variety of other environments, rather than defining a new OS structure. 
The OSKit uses unconventional techniques to maximize its usefulness, such as intentionally exposing imple- 
mentation details and platform-specific facilities. Further, the OSKit demonstrates a technique that allows 
unmodified code from existing mature operating systems to be incorporated quickly and updated regularly, 
by wrapping it with a small amount of carefully designed "glue" code to isolate its dependencies and export 
well-defined interfaces. The OSKit uses this technique to incorporate over 230,000 lines of stable code in- 
cluding device drivers, file systems, and network protocols. Our experience demonstrates that this approach 
to component software structure and reuse has a surprisingly large impact in the OS implementation domain. 
In two papers [14,15] we described the OSKit along with four real-world examples that showed how the OS- 
Kit is catalyzing research and development in operating systems and programming languages. 

We wrote a 500 page detailed manual [16] for the OSKit, targeted primarily at users but also containing 
information on OSKit internals. It includes much expository text (rationale, extended descriptions), which is 
appropriate as overview, background, and introductory information. The more concise but extensive "man 
pages" constitute an API reference manual. 

We made several public releases, which were downloaded at a rate of about 1000/month, including down- 
loads by a number of Web mirror sites, so the actual number of distributed copies will be higher. We have 
over 470 users on the OSKit mailing list. 

Along with the OSKit, we released a set of changes that can be applied to the Kaffe OpenVM (a popu- 
lar, commercial open source Java virtual machine), enabling KafTe to link with the OSKit and run on "bare 
hardware." Our changes were integrated into the Kaffe code base. 

As a step toward making Flask technology more accessible, we started to integrate Flask-enhanced OS- 
Kit components into Linux. In particular, we glued a simple OSKit filesystem component into Linux via a 
dynamically loadable kernel module (LKM). 
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2.2.1    OSKit Components 

The facilities provided by the OSKit are organized into two main categories, interfaces and libraries. 

Interfaces 

The OSKit's interfaces are a set of clean, object-oriented interfaces specified in the framework of Microsoft's 
Component Object Model (COM). For example, the OSKit provides a "block I/O" interface for communi- 
cation between file systems and disk device drivers, a "network I/O" interface for communication between 
network device drivers and protocol stacks, and a file system interface similar to the "VFS" interface in BSD. 
These interfaces are used and shared by the various OSKit components in order to provide consistency. 

Libraries 

Following is a summary of the 34 libraries currently provided by the OSKit. 

• Function libraries 

- c: A simple, minimal C library designed to work in a restricted OS environment. 

- kern: Low-level kernel support code of all kinds. 

- smp: Kernel code providing symmetric multiprocessor support. 

- com: Utility functions and wrappers for handling COM interfaces. 

- osenv. Default implementations of the "glue" functions required by "large" encapsulated com- 
ponents (e.g., device drivers, networking, filesystems) imported from other operating systems. 

• POSIX emulation and libraries 

- posix: Support for what a POSIX conformant system would typically implement as system calls. 

- freebsdjc: Complete POSIX-like C library derived from FreeBSD, providing both single- and 
multithreaded configurations. Together with the above posix library, provides a very large sub- 
set of the POSIX API. 

- freebsd-m: Complete standard math library, taken fromFreeBSD's libm. 

- fsnamespace: Provides file naming translation ("namei"-style), as well as high level mount and 
unmount capabilities. 

- rtld: Runtime Linker/Loader provides dynamic linking, loading, and shared library facilities. 

• Memory management 

- Imm: A flexible memory management library that can manage either physical or virtual memory. 
This library supports many special features needed by OS-level code, such as multiple memory 
types, allocation priorities, and arbitrary alignment and placement constraints. 

- amm: The Address Map Manager library manages collections of resources where each element 
has a name (address) and some set of attributes. Examples of resources include swap space and 
process virtual address space. 
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- svm: The Simple Virtual Memory library uses the AMM library to define a simple virtual-memory 
interface for a single address space that can provide memory protection and paging to a block 
device. 

• Threads, synchronization, and scheduling 

- threads: This library provides support for multithreaded kernels, including POSIX threads, syn- 
chronization, scheduling, and stack guards. Scheduling policies are the standard POSIX Round- 
Robin and and FIFO, as well as the CPU inheritance scheduling framework with provides rate- 
monotonic, stride (WFQ), and lottery scheduling policies. 

• Development aids 

- memdebug: Provides debugging versions of malloc et al. 

- gprofi Run-time profiling of kernels. 

• Simple disk/file reading and loading 

- diskpart: Recognizes various common disk partitioning schemes and produces a complete "map" 
of the organization of any disk. 

- fsread: A simple read-only file system interpretation library supporting various common types 
of file systems; typically used for bootstrapping. 

- exec: A generic executable interpreter and loader that supports popular executable formats. 

• Filesystem implementations 

- linux/s: Encapsulated Linux filesystem code. Includes support for ext2, the primary Linux 
filesystem, as well as numerous other PC filesystems supported under Linux. 

- iietbsd/s: Encapsulated NetBSD filesystem code. 

- memfs: A trivial memory-based filesystem (i.e., a RAM disk), exporting the standard OSKit 
filesystem interfaces. 

• Networking implementations 

- freebsd-net: Encapsulated FreeBSD networking code, including sockets. 

- bootp: BOOTP protocol (RFC 1048/1533) support. 

- hpfq: Hierarchical proportional-share control of outgoing network link bandwidth. 

- dpf: A packet dispatching mechanism using packet filter technology. 

• Device driver implementations 

- UnuxJev: Encapsulated Linux device drivers. Currently includes over 50 block (SCSI, IDE) and 
network drivers. 

- freebsdJev: Encapsulated FreeBSD device driver set. Currently includes eight TTY (virtual 
console and serial line, including mouse) drivers. 

• Video and window manager implementations 

- wimpi: Simple hierarchical windowing system. 
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- *video*: Basic video support, with two implementations: one encapsulating all of SVGALIB 
with broad device support, and one based on XFree86, but with only the S3 driver currently sup- 
ported. We also provide support for XI1 clients. 

• Miscellaneous 

The following four libraries are are not as well documented but are still very useful, especially the first 
two. 

- unix: Support to debug and run many OSKit components on FreeBSD and Linux in user-mode. 
Very useful for debugging. 

- startup: Contains functions to start up and initialize various OSKit components. 

- fiidp: Provides a "Fake UDP" implementation: a restricted send-only no-fragmenting version of 
UDP. 

- unsupp: Contains various unsupported hacks and utilities. 

2.3   The Flick Interface Definition Language Compiler 

In our work to optimize Mach and, later, Fluke IPC, we found it essential to improve the user-space costs in- 
volved, as well as to achieve more flexibility. A major source of costs proved to be the generation of stub 
code from the interface specification in DDL. 

2.3.1    General, Flexible, and Optimizing IDL Compilation 

An interface definition language (DDL) is a nontraditional language for describing interfaces between soft- 
ware components. IDL compilers generate "stubs" that provide separate communicating processes with the 
abstraction of local object invocation or procedure call. High-quality stub generation is essential for appli- 
cations to benefit from component-based designs, whether the components reside on a single computer or on 
multiple networked hosts. Typical DDL compilers, however, do little code optimization, incorrectly assum- 
ing that interprocess communication is always the primary bottleneck. (As networks and operating systems 
become faster, the bottleneck for structured communication (RPC, object invocation) will move to the pre- 
sentation layer.) More generally, typical IDL compilers are "rigid" and limited to supporting only a single 
EDL, a fixed mapping onto a target language, and a narrow range of data encodings and transport mechanisms. 

Flick, our IDL compiler, is based on the insight that DDLs are true languages amenable to modern com- 
pilation techniques. Flick exploits concepts from traditional programming language compilers to bring both 
flexibility and optimization to the domain of IDL compilation. Through the use of carefully chosen inter- 
mediate representations, Flick supports multiple TDLs, diverse data encodings, multiple transport mecha- 
nisms, and applies numerous optimizations to all of the code it generates. Our experiments showed that 
Flick-generated stubs marshal data between 2 and 17 times faster than stubs produced by traditional IDL 
compilers, and on today's generic operating systems, increased end-to-end throughput by factors between 
1.2 and 3.7. 

Our primary paper on Flick [17] was published in the most prestigious and competitive venue for com- 
piler research, the ACM SIGPLAN Conference on Programming Language Design and Implementation. 
However, Flick was not merely a research advance; it became a robust, well supported, well documented 
tool. During the course of the project we made several formal, public releases of Flick. The releases in- 
cluded a user's manual [18] that describes how to build Flick, how to run the various compiler passes, and 
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how to use the generated stubs. The manual presents a simple client/server phonebook, implemented in three 
different ways: as an ONC RPC (Sun RPC) application, as a CORBA C application, and as a CORBA C++ 
application. The examples are presented in detail and illustrate how users can make use of Flick-generated 
stubs in their own programs. 

We also produced a Flick internals manual [19], which describes its implementation details. People in- 
terested in studying, modifying, or extending Flick should consult this manual as a starting point. Those who 
simply want to use Flick do not need to read this document: use of the Flick compiler tools is described in 
the separate user's manual. 

Some of these releases contained dramatic improvements in function, completeness, and performance. 
New releases supported new transports and encodings, including Fluke 1PC, CORBA HOP, Sun ONC, and 
Trapeze (a gigabit Myrinet-based communication protocol from Duke University). Flick supported new 
IDLs and message formats, including almost complete support for Mach MIG, and support for security anno- 
tations on interfaces. New releases supported new platforms, including Windows 95/NT. Support for CORBA 
improved significantly: we supported CORBA on Mach and provided a greatly improved CORBA runtime 
during the course of the project. 

Because Flick provides a unique combination of flexibility and optimization, Flick was chosen to be part 
of the Quorum Distributed Objects Integration (DOI) project. The initial integration efforts went well: for 
instance, in 1998 Joe Loyall of BBN successfully modified BBN's QuO "delegate generator" to work with 
Flick's CORBA 1DL front end. We worked with the Quorum distributed object integration team, in par- 
ticular BBN and Washington University at St. Louis, to evolve Flick to support their needs, in particular 
adding complete C++ support and support for WUSTL's TAO system. Our implementation of the CORBA 
C++ mapping resulted in many additions to Flick, because the CORBA C++ mapping is significantly more 
complex than any of the other (C language) mappings we had previously implemented. 

232   Flexible IDL Compilation for Complex Communication Patterns 

We continued to develop Flick for other uses as well. In particular, we developed a strategy for using Hick 
to generate stubs for Khazana, our global memory service requiring asynchronous messages between nodes, 
described in Section 2.6. Flick now produces specially "decomposed" CORBA stubs, achieving flexible IDL 
compilation for complex communication patterns. 

Distributed applications are complex by nature, so it is essential that there be effective software devel- 
opment tools to aid in the construction of these programs. Commonplace "middleware" tools, however, of- 
ten impose a tradeoff between programmer productivity and application performance. For instance, many 
CORBA JJDL compilers generate code that is too slow for high-performance systems. More importantly, 
these compilers provide inadequate support for sophisticated patterns of communication. We believe that 
these problems can be overcome, thus making IDL compilers and similar middleware tools useful for a broader 
range of systems. 

To this end we extended Flick to produce specialized high-performance code for complex distributed 
applications. Flick can produce specially "decomposed" stubs that encapsulate different aspects of com- 
munication in separate functions, thus providing application programmers with fine-grain control over all 
messages. The design of our decomposed stubs was inspired by the requirements of a particular distributed 
application called Khazana. In two papers [20, 21] we described our experience in refitting Khazana with 
Flick-generated stubs. We believe that the special IDL compilation techniques developed for Khazana will 
be useful in other applications with similar communication requirements. 
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2.4 MOM: The Mini Object Model 

We designed, specified [22], and implemented MOM, the "Mini-Object Model": a layer above Fluke IPC 
that presents a more client/server-oriented interface to applications. MOM specifies a simple object invoca- 
tion model and language-specific bindings to the facilities of that modeL The purpose of this specification 
is to facilitate the portability of modules written for message-passing interfaces to a variety of operating en- 
vironments. Many components implemented in client-server systems using microkernel IPC facilities, in 
complex client-server infrastructure systems such as COM and CORBA, and in subsystems of monolithic 
operating system kernels, in fact assume only a conceptually simple model of object invocation and rely on 
relatively few other incidental operating system facilities. This specification hopes to provide an interface 
for object management and invocation that can be implemented in a variety of operating environments and 
impose little or no run-time overhead on modules using this interface instead of the specific interface native 
to a particular IPC system, OS kernel, or complex object system. 

During our analysis and performance improvements to the Fluke Operating System a number of exper- 
iments identified our MOM infrastructure as a problem area. To address this problem, we made significant 
algorithmic improvements to the reference counting component of MOM, in addition to making other MOM 
performance enhancements. We created a standalone benchmark to assist in tracking the effect of future 
changes to MOM. 

2.5 Java Operating Systems 

In the latter parts of the contract periods we explored the implications of applying our OS structuring ideas 
to operating systems that use the type-safe properties of the Java programming language to provide memory 
safety, instead of using the hardware MMU to do so. We explored many aspects of the issues in two exper- 
imental prototypes, with an emphasis on resource control. In our largest effort in this domain, we designed 
and implemented "Aha," an implementation of the Fluke nested process model in a Java virtual machine. 

2.5.1 Making the Case: OS Structure for Mobile Code 

In a highly competitive and visible OS workshop, we presented and published early results from our Alta 
prototype [23], focusing on making the case for such a comprehensive approach. The majority of work on 
protection in single-language mobile code environments focuses on information security issues and depends 
on the language environment for solutions to the problems of resource management and process isolation. 
We argued that what is needed in these environments are not ad-hoc or incremental changes but a coherent 
approach to security, failure isolation, and resource management. Protection, separation, and control of the 
resources used by mutually untrusting components, applets, applications, or agents are exactly the same prob- 
lems faced by multi-user operating systems. We argued that real solutions will come only if an OS model is 
uniformly applied to these environments. We presented Alta, our prototype Java-based system patterned on 
Fluke, a highly structured, hardware-based OS, and reported on its features appropriate to controlling mobile 
code. 

2.5.2 The Alta Operating System 

Many modern systems, including web servers, database engines, and operating system kernels, are using 
language-based protection mechanisms to provide the safety and integrity traditionally supplied by hardware. 
As these language-based systems become used in more demanding situations, they are faced with the same 
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problems that traditional operating systems have solved—namely shared resource management, process sep- 
aration, and per-process resource accounting. While many incremental changes to language-based, extensi- 
ble systems have been proposed, we demonstrated in an implementation and a thesis [24] that comprehensive 
solutions used in traditional operating systems are applicable and appropriate. 

The thesis gives a detailed description of Alta, an implementation of the Fluke operating system's nested 
process model in a Java virtual machine. The nested process model is a hierarchical operating system process 
model designed to provide a consistent approach to user-level, per-process resource accounting and control. 
This model accounts for CPU usage, memory, and other resources through a combination of system primi- 
tives and a flexible, capability-based mechanism. 

Alta supports nested processes and interprocess communication. Java applications running on Alta can 
create child processes and regulate the resources—the environment—of those processes. Alta demonstrates 
that the Java environment is sufficient for hosting traditional operating system abstractions. Alta extends the 
nested process model to encompass Java-specific resources such as class files, modifies the model to leverage 
Java's type safety, and extends the Java type system to support safe fine-grained sharing between different 
applications. Existing Java applications work without modification on Alta. 

Alta was compared in terms of structure, implementation and performance to Fluke and traditional hardware- 
based operating systems. A small set of test applications demonstrated flexible, application-level control over 
memory usage and file access. 

2.5.3 Java Operating Systems: Comparative Design and Implementation 

Language-based extensible systems such as Java use type safety to provide memory safety in a single address 
space. Memory safety alone, however, is not sufficient to protect different applications from each other. Such 
systems must support ^process model that enables the control and management of computational resources. 
In particular, language-based extensible systems must support resource control mechanisms analogous to 
those in standard operating systems. They must support the separation of processes and limit their use of 
resources, but still support safe and efficient interprocess communication. 

In our prototypes and in a paper [25] we demonstrated how this challenge can be addressed in Java oper- 
ating systems. First, we described the technical issues that arise when implementing a process model in Java. 
In particular, we laid out the design choices for managing resources. Second, we described the solutions that 
we explored in two complementary projects, Alta and GVM. GVM is similar to a traditional monolithic ker- 
nel, whereas Alta closely models the Fluke operating system. Features of our prototypes include flexible 
control of processor time using CPU inheritance scheduling, per-process memory controls, fair allocation 
of network bandwidth, and execution directly on hardware using the OSKit. Finally, we compared our pro- 
totypes with other language-based operating systems, in particular Cornell's "J-Kernel," and explored the 
tradeoffs between the various designs. 

2.5.4 Drawing the Red Line in Java 

Software-based protection has become a viable alternative to hardware-based protection in systems based 
on languages such as Java, but the absence of hardware mechanisms for protection has been coupled with 
an absence of a user/kernel boundary. In a well-received paper [26] we showed why such a "red line" must 
be present in order for a Java virtual machine to be as effective and as reliable as an operating system. We 
discussed how the red line can be implemented using software mechanisms, and explained the ones we use 
in the Java system that we are building. 
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2.5.5   Memory Management: The Need for Predictable Garbage Collection 

Modern programming languages such as Java are increasingly being used to write systems programs. By 
"systems programs," we mean programs that provide critical services (compilers), are long-running (Web 
servers), or have time-critical aspects (databases or query engines). One of the requirements of such pro- 
grams is predictable behavior. Unfortunately, predictability is often compromised by the presence of garbage 
collection. Various researchers have examined the feasibility of replacing garbage collection with forms of 
stack allocation that are more predictable than GC, but the applicability of such research to systems programs 
had not previously been studied or measured. A particularly promising approach allocates objects in the nth 
stack frame (instead of just the topmost frame): we call this deep stack allocation. In a detailed paper [27] we 
presented dynamic profiling results for several Java programs to show that deep stack allocation should bene- 
fit systems programs, and we described the approach that we are developing to perform deep stack allocation 
in Java. 

2.6   The Khazana/KOLA Infrastructure for Building Distributed Services 

In 1998 we transitioned our DSM effort away from LAN-based parallel numeric applications to a broader 
and more prevalent class of applications: local and wide-area distributed applications. The base layer of our 
new architecture is called Khazana; above that are two layers that comprise KOLA, the Khazana Object Layer 
Architecture. 

Description of Khazana: Essentially all distributed systems, applications, and services at some level boil 
down to the problem of managing distributed shared state. Unfortunately, while the problem of managing dis- 
tributed shared state is shared by many applications, there is no common means of managing the data—every 
application devises its own solution. We developed Khazana, a distributed service exporting the abstraction 
of a distributed persistent globally shared store that applications can use to store their shared state, and de- 
scribed it in a paper [28]. Khazana is responsible for performing many of the common operations needed 
by distributed applications, including replication, consistency management, fault recovery, access control, 
and location management. Using Khazana as a form of middleware, distributed applications can be quickly 
developed from corresponding uniprocessor applications through the insertion of Khazana data access and 
synchronization operations. 

Experience with Khazana-based Applications: We evaluated the effectiveness of basing distributed sys- 
tems on a persistent globally shared address space abstraction, as implemented by Khazana, and documented 
our results in a paper [29]. Khazana provides shared state management services to distributed application de- 
velopers, including consistent caching, automated replication and migration of data, location management, 
access control, and (limited) fault tolerance. We reported on our experience porting three applications to 
Khazana: a distributed file system (KFS) based on Linux local filesystem code, a distributed name service 
(KNS), and a cooperative drawing program based on xf ig (KFIG). The basic Khazana abstraction of persis- 
tent shared memory made it easy to create fairly efficient distributed services with flat data abstractions (KFS 
and KNS), but our port of xf ig made it clear that a higher level abstraction is preferable for applications 
with more structured state. As a result, we extended Khazana to support a limited set of object-like functions 
(reference swizzling, event upcalls, and update propagation). We present herein the current Khazana design 
and implementation, and discuss the lessons learned from our initial evaluation of it. 
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KOLA: the Khazana Object Layer Architecture: Based on our experience with Khazana, we designed a 
form of three-tier middleware for distributed applications and services based on Khazana. The lowest layer, 
Khazana proper, provides basic distributed storage, consistency, availability, locking, and security mecha- 
nisms for unstructured page-oriented data. The middle layer provides language independent support for "ob- 
jects," including object caching, persistent heap management, basic reference swizzling, and an extension of 
the basic "lock intents" mechanism that supports independent locking of multiple objects within a page. The 
top layer is a set of language specific libraries that support method invocation on remotely instantiated ob- 
jects, run time type inference, language-specific reference swizzling, and (optional) garbage collection. The 
middle and top layer are referred to collectively as KOLA (Khazana Object Layer Architecture). 

KOLA allows us to support reference-filled, pointer-rich applications while allowing the base "region- 
based" Khazana to co-exist independently. Our initial version of KOLA demonstrated the feasibility of ex- 
tracting the necessary programming language-level information to support persistent distributed objects on 
top of Khazana. 

A Language-Specific Layer: Distributed Persistent C++ Objects: We designed and implemented a 
C++ object layer for Khazana. The C++ layer described herein lets programmers use familiar C++ idioms to 
allocate, manipulate, and deallocate persistent shared data structures. It handles the tedious details involved 
in accessing this shared data, replicating it, maintaining consistency, converting data representations between 
persistent and in-memory representations, associating type information including methods with objects, etc. 
To support the C++ object layer on top of Khazana's flat storage abstraction, we developed a language- 
specific preprocessor that generates support code to manage the user-specified persistent C++ structures. In a 
paper [30] we described the design of the C++ object layer and the compiler and runtime mechanisms needed 
to support it. 
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3   Technology Transfer 

Most technology transfer was mentioned under each software component in the "Results" section. A few 
aspects will be mentioned here. 

3.1   Software 

The OSKit: The releases were picked up by hundreds of sites and have many users, ranging from the DARPA- 
funded Express project at MIT, which is using the OSKit to develop an operating system focused around the 
ML implementation language, to Network Storage Solutions, a company using the OSKit inside network- 
attached "file service appliances." Using the OSKit, MIT's Express project has gotten CMU's Foxnet system 
(TCP/IP in ML) to run on the bare hardware. Other users include the DARPA-funded exokernel project at 
MIT/CMU, the L4-clone-based Real-time Operating Systems project at TU-Dresden, and the Rice University 
Programming Languages group. 

Flick IDL Compiler Kit: robust releases were downloaded by over 650 sites in 1998 alone Hick was 
used for the DARPA-funded "Porcupine" distributed, scalable mail service at the University of Washington 
The real-time OS project at Technische Universität Dresden ported Flick to L4 IPC, and are using it regu- 
larly. Flick was part of BBN's DARPA-sponsored QuOIN 2.0 software release in 1999, under the Quorum 
distributed object integration project. 

Various commercial companies have also expressed interest in using Hick. The most promising is Apple 
We have been talking regularly with Apple about the possibilities for using Hick to generate code for their 
Mac OS X operating system, because Hick offers the opportunity to help bridge the many disparate object 
models and implementations in their system. From this interaction we have been learning that Hick may 
have much to offer legacy systems through its flexibility. In December 1998, BBN included Hick in their 
(unfunded) proposal for DARPA BAA 99-03, "Data Intensive Computing." 

Huke/Hask: We publically released the Huke/Hask kernel source in February 1999, timed to coincide 
with our OSDI paper on Huke "atomicity." Portions of the Hask servers were released as part of regular 
OSKit releases during 1999. We plan to release the rest of the Huke/Hask operating system later this year 
timed to coincide with the release of Fluke's Java virtual machine incarnation, "Alta." Our NSA collaborators 
are integrating the Hask architecture and existing components into Linux. 

3.2   Personnel 

National Security Agency: two section R23 (Information Security Research) researchers, Jeff Turner and 
Steve Smalley, worked on-site at the University of Utah for one year from August 1996 through July 1997 
They worked on Fluke/Flask and other security and assurance-related aspects of the Hux project. Close inter- 
action with these and other R23 personnel continued for the duration of the project, and in general, continues 
to this day. Besides regular email and phone meetings, this includes joint paper writing and read/write access 
to shared source repositories, 

Greg Benson, a Ph.D. student in the CS department at the University of California at Davis, joined us as 
a visiting Research Assistant from January-May 1997. His thesis topic was "run time support for advanced 
programming languages" and while with us he ported the SR parallel language to the OSKit He co-authored 
a paper with us on the OSKit. 

Khazana: many of the ideas and mechanisms have involved two-way tech transfer between Utah and 
MangoSoft Corporation (http://www.mango.com/), due to the co-PI's consulting involvement. 
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Our many changes to Kaffe, a popular commercial open-source Java Virtual Machine, to support flexible 
multithreading, flexible scheduling, improve robustness, and to support the OSKit, have been incorporated 

into the base version of Kaffe. 

33   Relationships 

During the course of the grant periods, we forged relationships with many companies who were interested in 
the DARPA-sponsored technology we were developing. For two companies, this interest was great enough 
that it was manifested in grants. To help support the research reported herein, during the grant period we 
received several cash grants from Novell and an equipment grant from Compaq/DEC. We had numerous 
technical meetings with Novell, the Open Software Foundation, Hewlett-Packard, Sun Microsystems, Ap- 
ple Computer, IBM, Secure Computing Corporation, Trusted Information Systems, and BBN, to discuss our 

research and its relevance to their needs. 
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[16] The OSKit: a Manual (version 057). Flux Research Group. University of Utah. Postscript and HTML 
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[17] Flick: A Flexible, Optimizing IDL Compiler. Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and 
Gary Lindstrom. In Proc. ACM SIGPLAN Conf. on Programming Language Design and Implementa- 
tion, pages 44-56, Las Vegas, NV, June 1997. 

[18] Flick: The Flexible IDL Compiler Kit Version Uc User's Manual. Flux Research Group. Univer- 
sity of Utah. Part of the Flick 1.2c software distribution, available at http://www.cs.utah.edu/flux/flick/. 
48 pages, May 1999. 
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[20] Flexible and Optimized IDL Compilation for Distributed Applications. Eric Eide, Jay Lepreau, 
and James L. Simister. In David O'Hallaron, editor, Languages, Compilers, and Run-Time Systems for 
Scalable Computers (LCR '98), volume 1511 of Lecture Notes in Computer Science, pages 288-302. 
Springer, May 1998. 

[21] Flexible IDL Compilation for Complex Communication Patterns. Eric Eide, James L. Simister, 
Tim Stack, and Jay Lepreau. Scientific Programming, 7(3,4):275-287,1999. 
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[22] MOM, The Mini Object Model: Specification (Draft). Roland McGrath. July 1998. Unpublished 
report, available at http://www.cs.utah.edu/flux/docs/mom.ps.gz. 

Java Operating Systems 

[23] Nested Java Processes: OS Structure for Mobile Code. Patrick Tullmann and Jay Lepreau. In Proc. 
of the Eighth ACM SIGOPS European Workshop, pages 111-117, Sintra, Portugal, September 1998. 
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[24] The Alto Operating System. Patrick A. Tullmann. Master's thesis, University of Utah, 1999   104 
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